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Abstract. Precipitation (P) and soil moisture (SM) are critical components of the global water, energy, and biogeochemical 

cycles, yet their patterns and interrelations in the Arctic are poorly understood. Due to the sparse in situ measurement 

network, satellites are the only way to observe P and SM in high-latitude regions. This study uses NASA’s SMAP satellite to 

analyze the relationship between SM and P, assess the feasibility of estimating P from SM, and examine SM drydown 10 

patterns in Finland from April to September over 2018-2019. The analysis reveals a notable spatial and temporal variability 

in SM, with a weaker correlation between P and SM in spring due to snowmelt and a stronger relationship in summer and 

fall. Water bodies complicate the SM retrieval causing the SM retrievals to saturate. Using the SM2RAIN algorithm, we 

estimated P from SM data. The algorithm shows promising results, detecting the area of rainfall accurately in most cases but 

estimating the intensity of the rainfall is more challenging, particularly for light and very heavy rain. We analyzed SM 15 

drydown patterns by fitting an exponential model to each SM drydown period, from which we estimated the exponential 

decay time scale (τ) and the lower bound of SM (SMmin). τ does not show much spatial or temporal variability. The 

distribution of τ is positively skewed, with a mode of 1.6 days and a median of 4.0 days, consistent with other studies. The 

distribution of SMmin is also positively skewed, with a mode of 0.14 m3 m-3 and a median of 0.17 m3 m-3. SMmin exhibits 

another lower peak at 0.02 m3 m-3, the lower limit of SMAP SM retrievals, possibly causing an artifact in the results. SMmin 20 

shows spatial variability, with the lower bound being slightly higher near water bodies but also showing a more prominent 

peak at 0.02 m3 m-3. Grid cells with dense vegetation and low vegetation agree better with each other, indicating that water 

bodies particularly affect and complicate SM retrieval. The promising results suggest that the method could be applied across 

the entire Arctic region. 

1 Introduction 25 

Precipitation (P) and soil moisture (SM) are critical components of the climate system (Trenberth and Asrar, 2014), both 

categorized as Essential Climate Variables (ECV) by the Global Climate Observing System (GCOS; Bojinski et al., 2014). P 

and SM are tightly linked and play vital roles in the global water, energy, and biogeochemical cycles (McColl et al., 2017a; 

Seneviratne et al., 2010). They affect surface energy fluxes, the carbon cycle, vegetation growth, and land-atmosphere 
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interactions, and greatly influence the development of various natural hazards, such as droughts, floods, and heat waves 30 

(D’Odorico et al., 2003; Entekhabi et al., 1992; Mao et al., 2015; McColl et al., 2017a; Lorenz et al., 2010; Schwingshackl et 

al., 2017; Trenberth and Asrar, 2014). Accurate estimates of P and SM are essential for climate studies, weather forecasting, 

and various climatological and hydrological applications (Herold et al., 2016; Wake, 2013; Forootan et al., 2019; Abera et 

al., 2017). Furthermore, key variables related to SM drydown patterns, including the exponential decay time scale and the 

lower bound of SM, are crucial inputs for climate models (McColl et al., 2017b; Sellers et al., 1997).  35 

 

Despite their importance, P and SM drydown patterns in the Arctic remain poorly understood. Previous satellite-based 

studies exploring the relationship between P and SM and drydown patterns have often excluded the Arctic region due to the 

presence of dense forests, water bodies, and seasonally frozen ground, which complicate the SM retrieval (McColl et al., 

2017b; Akbar et al., 2018; Sehler et al., 2019). Furthermore, existing P data products exhibit notable variability in the 40 

magnitude, frequency, and phase of precipitation in the Arctic (Barrett et al., 2020; Behrangi et al., 2016; Boisvert et al., 

2018; Sun et al., 2018). The Coupled Model Intercomparison Project Phase 6 (CMIP6) models project a significant increase 

in future P in the Arctic (Bintanja and Selten, 2014; McCrystall et al., 2021). Research indicates that increased evaporation 

may substantially contribute to the anticipated rise in P in the Arctic (Bintanja and Selten, 2014). Therefore, it is essential to 

improve our understanding of the patterns of P and SM in the Arctic, as well as the complex relationship between these two 45 

variables. 

 

Given the sparse in situ measurement network, satellites are usually the only way to observe P and SM in high-latitude 

regions. Currently, direct satellite-based P estimates lack consistency and sufficient spatiotemporal coverage (Hou et al., 

2014; Brocca et al., 2019). However, P can be estimated indirectly using satellite-based SM data (Brocca et al., 2013): SM 50 

increases during rainfall and decreases during dry periods. The satellite-based SM measurements provide good 

spatiotemporal coverage, and unlike direct rainfall measurements, SM data also provide insights into the relationship 

between SM and P, as well as the dynamics of water after it reaches the ground. The indirect approach has been examined in 

several global and regional studies using a range of satellite-based SM datasets (e.g., Brocca et al., 2014; Ciabatta et al., 

2018; Koster et al., 2016; Mossafa et al., 2023; Miao et al., 2023). While these studies highlight the potential of this 55 

approach, they often exclude the Arctic region due to the challenges associated with SM retrieval (Ciabatta et al., 2018; 

Brocca et al., 2019; Koster et al., 2016; Zhang et al., 2019). Moreover, satellite-based research on drydown patterns has 

generally lacked coverage of the Arctic, creating a need to include this region in future studies.  

 

Soil moisture can be observed using passive microwave satellites operating at low frequencies (Kerr et al., 2010; Entekhabi 60 

et al., 2014). At these low frequencies (<5 GHz), there is a substantial difference in the dielectric constant between water and 

dry soil, which affects the microwave emissions (thermal electromagnetic radiation) from the ground. This difference makes 

the method sensitive to soil water content (Njoku and Entekhabi, 1996). Additionally, at low frequencies, the influence of the 
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atmosphere and vegetation is reduced compared to higher frequencies, such as C- and X-bands, which operate at 6 GHz and 

11 GHz (e.g., Schmugge et al., 1986). Typically, the low-frequency satellites operate on L-band (1.4 GHz), making them 65 

highly sensitive to the SM in the top layer (0-5 cm) of the surface (Njoku and Entekhabi, 1996). In recent years, several 

satellites have been monitoring surface SM, including the National Aeronautics and Space Administration’s (NASA) Soil 

Moisture Active Passive (SMAP) satellite, and the European Space Agency’s (ESA) Soil Moisture and Ocean Salinity 

(SMOS) satellite (Entekhabi et al., 2014; Kerr et al., 2010).  

 70 

 

Figure 1. Schematic example of the relationship between P and SM and satellite-based SM retrievals. 

 

These satellites perform well and provide generally accurate estimates of surface SM (e.g., Colliander et al., 2022; 2023; 

Chan et al., 2016; Chen et al., 2018). However, satellite-based SM retrieval also faces challenges. Firstly, the spatial 75 

resolution is relatively coarse (~40 km), making it difficult to detect small-scale phenomena. Additionally, the revisit time of 

SMAP over a specific area typically ranges between 1 to 3 days (Entekhabi et al., 2014), depending on the latitude, which 

may complicate the detection of rapid changes in SM (e.g., McColl et al., 2017b). Since rainfall events can be both small-

scale and move rapidly, this may lead to inaccuracies in capturing P from SM. For high-latitude areas investigated in this 

study, the revisit time is about one day, which helps to capture most of the SM minimums and maximums. Figure 1 80 

illustrates a schematic example of the relationship between P and SM along with satellite-based SM retrievals. SM increases 

during a rainfall event and decreases exponentially during dry periods. Satellites are limited to detecting only part of this 

temporal variability due to their revisit times. However, despite the difficulties posed by the Arctic environment, the coarse 

resolution, and non-ideal revisit times, satellites are essential for estimating P and SM in the Arctic due to the lack of in situ 

measurements.  85 
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Due to the reasons described above, it is essential to better understand the relationship between P and SM and to improve our 

understanding of P and SM patterns across the Arctic. Therefore, this study aims to (1) analyze the relationship between SM 

and P, (2) investigate whether satellite-based SM data can be used to estimate P rates, and (3) examine SM drydown patterns 

across Finland. This study is based on SM data from NASA’s SMAP satellite and uses ground-based weather radar data and 90 

in situ SM and P measurements as reference data. While this study focuses on Finland, the method aims to be applied across 

the entire Arctic region. 

 

Table 1. Datasets used in this study. 

Dataset Variable Resolution / location Reference  

SMAP  SM 9 km × 9 km, 1 to 3 days O’Neill et al. (2021) 

Ground-based weather 

radar 
P 250 m × 250 m, hourly Saltikoff et al. (2010) 

In situ 

SM 

Sodankylä, hourly 
Ikonen et al. (2016; 2018) 

Saariselkä, hourly 

Kenttärova, hourly Nousu et al. (2024) 

Värriö, hourly 
SmartSMEAR (2024) 

Hyytiälä, hourly 

P 

Sodankylä, hourly 

FMI (2024b) 

Saariselkä, hourly 

Kenttärova, hourly 

Värriö, hourly 

Hyytiälä, hourly 

2 Data and Methods 95 

The data of this study consist of satellite-based SM data, ground-based weather radar data, and in situ measurements. Table 1 

lists the used datasets, and the following sections describe them in more detail. 

2.1 SMAP SM data 

NASA’s SMAP satellite has been measuring SM since 2015 (Chan et al., 2016; Entekhabi et al., 2014; Das et al., 2018). The 

satellite uses an L-band frequency (1.41 GHz), which makes it highly sensitive to the SM in the top layer (0-5 cm) of the 100 

surface (Schmugge et al., 1986; Njoku and Entekhabi, 1996). SMAP provides global SM measurements every 2 to 3 days. 
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However, due to Finland's northern location between 60 °N and 70 °N, SM is measured at least daily in northern Finland and 

every 1 to 2 days in southern Finland (Entekhabi et al., 2014). 

 

We used the enhanced Level 3 (L3) SM product (Version 6) in Polar grid (O’Neill et al., 2021). Currently, the dual-channel 105 

algorithm (DCA) is the baseline algorithm, while earlier versions used the Single Channel Algorithm-Vertical Polarization 

(SCA-V) as the baseline (e.g., Chan et al., 2018). Our analysis primarily relied on the DCA data, but we also included some 

additional insights from SCA-V and the Single Channel Algorithm-Horizontal Polarization (SCA-H). We only used the 

descending, i.e. the 6 am, SM observations. In addition to SM data, we also used information on surface conditions provided 

in the product, including quality retrieval flags and surface flags. The SMAP SM retrievals are relatively little affected by 110 

rain (Colliander et al., 2020a), so no additional screening was done for retrievals obtained during rain detected with the 

weather radar or in situ measurements. The native spatial resolution of the SMAP data is 36 km, which is oversampled into a 

9 km grid (O’Neill et al., 2021). 

2.2 Radar data 

The Finnish Meteorological Institute (FMI) radar network consists of twelve dual-polarization C-band Doppler 115 

radars covering almost the entire country (FMI, 2024a; Saltikoff et al., 2010). In this study, we used radar composite data 

from eleven of these radars (Fig. 2a), as the most recent radar was installed after the completion of this analysis. The radar 

composite data have undergone signal processing to remove stationary objects, filter out weak signals, and adjust for non-

meteorological echoes (Saltikoff et al., 2010). The post-processing also included distance correction for rain measurements 

and the conversion of radar reflectivity to rainfall intensity. We used hourly P rate data to calculate 24-hour P rates based on 120 

the SMAP overpass times. The data have a native spatial resolution of 250 meters, and we averaged the data to match the 

effective SMAP footprint size. 

2.3 In situ measurements 

We used in situ measurements of SM and P from five locations (Fig. 2a). The uneven distribution of these locations results 

from the limited availability of in situ SM measurements. FMI conducts SM measurements in Sodankylä and Saariselkä 125 

(Ikonen et al., 2016; 2018), located in Northern Finland. The measurement network in Sodankylä includes 14 measurements 

within a single SMAP grid cell, while Saariselkä has 4 measurements, also within one SMAP grid cell. We used a weighted 

average of the in situ measurements for both locations. The Station for Measuring Ecosystem-Atmosphere Relations 

(SMEAR) network (Hari and Kulmala, 2005) provides SM measurements in Hyytiälä (SMEAR II) and Värriö (SMEAR I). 

In Hyytiälä, SM is measured at two sites—one in a forest and the other in a fen. The fifth location for SM measurements is in 130 

Kenttärova in Northern Finland (Nousu et al., 2024). In addition to SM data, we included P in situ measurements in our 

analysis for these five locations where SM data were available. The P data are provided by FMI (FMI, 2024b), and we 

selected the nearest P measurement location for each SM measurement site. 
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 135 

Figure 2. (a) The study area and the locations of the ground-based weather radars and in situ measurements. (b) The quality 

retrieval flags for SMAP. (c) The surface flags for SMAP. 

 

2.4 Methods 

2.4.1 Study area and study period 140 

The study area was determined by the coverage of the FMI radar network (Fig. 2a). In the Finnish climate, radar can detect 

summer precipitation up to a distance of 250 km (FMI, 2024a). As a result, the study area encompasses nearly all of Finland 

and parts of neighboring countries. Finland is a challenging region for satellite-based SM retrieval, as large areas of the study 

region are covered with either water, dense vegetation, or both (Chan et al., 2018). As a result, only less than half of the 

SMAP SM retrievals have the recommended quality (Fig. 2b). As the surface conditions affect the SM retrieval, we 145 

identified these regions based on the SMAP surface and quality retrieval flags and divided the study area into four classes 

(Fig. 2c). A grid cell is marked with water if the water fraction exceeds 0.05 based on Moderate Resolution Imaging 

Spectroradiometer (MODIS) MOD44W v006 product (O’Neill et al., 2021). If the water fraction exceeds 0.5, the SM 

retrieval is skipped. Similarly, a grid cell is marked with dense vegetation, if the vegetation water content (VWC) exceeds 

5.0 kg m-2 and the retrieval is skipped if VWC exceeds 30.0 kg m-2 (O’Neill et al., 2021). 150 

 

Finland experiences both maritime and continental climates and is predominantly covered by boreal forests. The mean 

annual P in Finland ranges mostly between 500 mm and 650 mm (Jokinen et al., 2021). The highest P rates are typically 
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found in Southern and Eastern Finland, while Northern Finland is the driest region. The first snowfall typically occurs in 

October or November, depending on the location, and most of Finland remains snow-covered until the end of March. 155 

Southern and Central Finland generally become snow-free by the end of April, while in Northern Finland, snow typically 

melts completely by the end of May (Jokinen et al., 2021). Consequently, the selected study period is from April to 

September over two consecutive years (2018 and 2019), when the region is predominantly snow-free, but still allowing for 

the examination of snowmelt's impact on SM.  

2.4.2 SM2RAIN algorithm 160 

We used the SM2RAIN algorithm to estimate P rates from SM data. The soil is assumed to act as a natural rain gauge, and 

changes in SM can be used to estimate rainfall. The algorithm is based on the inversion of the soil water balance equation 

(Brocca et al., 2013): 

 

Z
ds(t)

dt
= P(t) − R(t) − E(t) − G(t) ,        (1) 165 

 

where Z is the soil water capacity, s(t) is the relative SM, t is the time, and P(t), R(t), E(t), and G(t) are the precipitation, 

surface runoff, evapotranspiration, and drainage rates. During rainfall events, evapotranspiration and runoff are assumed to 

be negligible (Brocca et al., 2014; Kirchner, 2009), and the drainage rate can be estimated using the following equation 

(Brocca et al., 2013; Famiglietti and Wood, 1994): 170 

 

G(t) = as(t)b ,           (2) 

 

where a and b are two parameters expressing the nonlinearity between drainage rate and soil saturation. When rearranging 

the terms in Eq. (1) and using Eq. (2), we can estimate P using the following equation: 175 

 

P(t) = Z
ds(t)

dt
+ as(t)b ,          (3) 

 

Using the equation above, we can estimate the P rate if we know the relative SM, the changes in relative SM, and three 

parameters (Z, a, and b). The relative SM and the changes in SM are obtained from SMAP data by scaling the data between 180 

0 and 1. The parameters, in turn, have been estimated in several studies (e.g., Brocca et al., 2013; Brocca et al., 2014; Do et 

al., 2024; Miao et al., 2023). In this study, we use the parameters from Brocca et al. (2014). 

https://doi.org/10.5194/egusphere-2025-245
Preprint. Discussion started: 17 February 2025
c© Author(s) 2025. CC BY 4.0 License.



8 

 

 

Figure 3. Timeseries of in situ SM and radar-based P measurements and identified drydowns in Kenttärova. 

2.4.3 Drydowns 185 

Drydown periods occur when there is a consistent negative change in SM over time. We identified these drydown periods 

separately for each SMAP grid cell. Figure 3 illustrates an example of SMAP SM observations along with the identified 

drydowns in Kenttärova. Following the approach of McColl et al. (2017b), we excluded positive increments of less than 5% 

of the observed SM range at the site, which helped ensure that noise in the observations did not truncate the drydowns.  

 190 

Drydown periods can be identified using either SM data alone or by including P time series data. While McColl et al. 

(2017b) relied solely on SM information, e.g. Akbar et al. (2018) used both SM and P data, including only days with less 

than 1 mm day-1 of P in their analysis. In this study, we employed both methods. We identified drydowns based on SM data 

alone and also used radar-based P data with three different thresholds: 0.3 mm day-1, 1 mm day-1, and 4.5 mm day-1. These 

thresholds were selected according to FMI’s definitions for light, moderate, and heavy rainfall (FMI, 2024c). We analyzed 195 

whether including P data affects the identification of drydown periods. 

 

After identifying the drydowns, we fitted an exponential model (McColl et al., 2017b; Rondinelli et al., 2015; Shellito et al., 

2016) for each drydown that included at least four SMAP observations: 

 200 

SM(t) = ΔSM ∙ e−
t

τ + SMmin ,          (4) 

 

where SM(t) is the soil moisture, ΔSM is the positive increment in SM preceding the drydown, τ is the estimated drydown 

exponential decay time scale, i.e. the time constant, and SMmin is the estimated lower bound of SM. Following McColl et al. 

(2017b), we constrain SMmin to be less than the lowest SM observed during the drydown, and greater than or equal to the 205 

lowest SM observed over the entire observation period in that grid cell. An example of the exponential fits in Kenttärova is 

illustrated in Fig 3. 
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Figure 4. (a-f) Monthly mean SM and (g-l) monthly SM range in 2018. 210 

3 Results 

3.1 SM Mean and Variability 

Figures 4a-f show the monthly mean SM for April through September in 2018. In April, large areas in Finland remain 

covered in snow; therefore, no SMAP observations are available. SMAP does not retrieve soil moisture, if the snow areal 

fraction within a SMAP grid cell exceeds 50% based on the National Oceanic and Atmospheric Administration (NOAA) 215 

Interactive Multisensor Snow and Ice Mapping System (IMS) database (O’Neill et al., 2021). In the southern regions, snow 

https://doi.org/10.5194/egusphere-2025-245
Preprint. Discussion started: 17 February 2025
c© Author(s) 2025. CC BY 4.0 License.



10 

 

has already melted, leading to very high SM levels. Snow continues to melt in the northern areas during May, and as a result, 

SM levels remain high throughout the month. In June, July, and August, after decreasing from the snow-melt levels, the 

mean SM remains relatively stable but begins to increase again in September. In general, SM is higher in the southern parts 

of Finland compared to the north. This agrees well with the spatial distribution of annual P; the soil contains more water in 220 

areas that get more precipitation. Additionally, Fig. 4 indicates that SMAP SM retrieval tends to saturate near water bodies, 

particularly in the southeastern parts of the country. 

 

The range of SM retrievals for each month, i.e. the difference between maximum and minimum SM values, follows a 

somewhat similar spatial distribution as the mean values (Figs. 4g-l). The smallest range is in northern Finland and the range 225 

increases towards the south. The lake-filled parts of southeastern Finland have a range of 0 because of the saturated SM 

retrievals. 

 

 

Figure 5. Density plots for monthly SM range against monthly P (a-c) and maximum daily P (d-f). 230 
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We examined how the monthly SM range in each grid cell correlates with the monthly total P (Figs. 5a-c) and with the 

maximum daily P throughout the month (Fig. 5d-f). In addition to analyzing these relationships over the entire study period, 

we also analyzed them separately for April-May, when snowmelt impacts SM, and for June-September. During April and 

May (Figs. 5b and 5e), we found no correlation between the SM range and either the total monthly P or the maximum daily 235 

P. This finding aligns with what was illustrated in Fig. 4: the melting snow tends to raise SM levels, consequently increasing 

the SM range. From June onwards (Figs. 5c and 5f), there is a detectable dependency between the variables, with higher 

daily or monthly P leading to an increase in SM range. Generally, the monthly P values are low, and in most grid cells, they 

do not exceed 20 mm. However, there are specific grid cells where the monthly P can reach nearly 100 mm, and in these 

areas, the SM range also exhibits higher values. 240 

 

 

Figure 6. Timeseries of SM and radar-based P measurements in Sodankylä and Hyytiälä in 2018. The grey shaded area indicates 

the days when the soil temperature is below 0 °C. 

 245 

Figure 6 shows time series data of SMAP SM estimates alongside in situ SM measurements and daily radar-based P rates for 

Sodankylä and Hyytiälä in 2018. The timeseries for Saariselkä, Kenttärova, and Värriö are in the Supplementary material 

(Fig. S1). In Sodankylä, there is a general agreement between the SMAP estimates and the in situ measurements averaged 

across the SMAP footprint. In April and early May, only in situ SM measurements are available, as snow covers over 50% of 

the grid cell. During the first half of April, the soil remains frozen, which decreases the permittivity measured by the sensor, 250 

thus leading to very low SM values. By mid-April, the daily mean air temperature rises above 0 °C (FMI, 2024b) 
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consequently, causing the snow to begin melting. The soil temperature rises above 0 °C and with the combination of melting 

snow and rainfall, SM values show a clear increase during the last half of April. Snow completely melts by May 13th, which 

is also when SM reaches its maximum value. During mid to late May, dry conditions prevail, resulting in a decrease in SM, 

which both the SMAP and in situ measurements similarly detect. The SCA-H-based SM estimates are slightly lower, while 255 

the DCA and SCA-V-based values are more consistent with each other. Later in the study period, in situ measurements 

exhibit slightly greater variability compared to SMAP estimates. 

 

In Hyytiälä, the datasets show larger discrepancies. The Hyytiälä grid cell is flagged with both water and dense vegetation, 

complicating satellite-based SM retrieval. There are two in situ SM measurement sites within the grid cell, and they show 260 

notable differences: the site located in the forest consistently detects low values throughout the study period, while the site in 

the fen initially detects much higher values, which decrease as summer progresses into fall. Initially, the SMAP retrievals 

fall between the two in situ measurements, but they show higher values by the end of the study period. Based on the in situ 

measurements, it is evident that the SM can vary notably within a relatively small area (see also, e.g., Famiglietti et al., 1999; 

2008). This also considerably impacts satellite-based measurements and complicates SM retrieval but also makes the 265 

comparison between satellite-based and in situ SM measurements more challenging and possibly less reliable (e.g., Cosh et 

al., 2004; Chen et al., 2019). The time series also show that occasionally, SM and P do not correlate clearly. This 

discrepancy is likely because radar-based P estimates cover a much larger area due to the averaging of data to match the 

effective SMAP footprint size, while in situ SM measurements only provide information from the specific measurement site. 

In Finland, especially during summer, precipitation typically occurs as small-scale showers, meaning rain may not always be 270 

recorded at the in situ measurement location. 

3.2 SM2RAIN 

To estimate P from SM measurements, we employed the SM2RAIN algorithm, which treats soil as a natural rain gauge. 

Figure 7 shows daily P based on radar data and the SM2RAIN algorithm for three specific dates: 19th June 2018, 3rd July 

2018, and 18th August 2019. On 19th June (Figs. 7a-d), most of the rain is concentrated south of 65 °N, with the highest 275 

intensities observed in southwestern Finland. The SM2RAIN algorithm predominantly identifies the correct rainfall locations 

and accurately shows the highest intensities in the appropriate regions. However, the presence of numerous lakes in eastern 

and southeastern Finland complicates SM retrieval, leading to inaccuracies in rainfall detection in those areas. In northern 

Finland, rainfall occurs in the western regions, while the northern and northeastern areas remain dry, which the SM2RAIN 

algorithm identifies correctly. The SMAP single-channel algorithms (Figs. 7c-d) perform slightly better near water bodies, 280 

but particularly the SCA-H-based SM2RAIN algorithm tends to overestimate heavy rainfall in the southwest while 

underestimating P in the northwest. 
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Figure 7. Daily P based on radar data and SM2RAIN algorithm for three specific days. 285 
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On 3rd July 2018 (Figs. 7e-h), a narrow rain band extends from western Finland to eastern Lapland. Another area of rainfall 

is located near the western border in the north. The SM2RAIN algorithms accurately detect the rain near the coast but 

struggle to estimate the highest intensities. Additionally, all the SM2RAIN algorithms detect rain along Sweden's coast, 

which is not visible in the radar data. This discrepancy may be due to the long distance from the radar; when far away, the 

radar has difficulty accurately detecting rain, making comparisons less reliable. The analysis for 18th August 2019 shows 290 

results similar to the previous days. Overall, while the SM2RAIN algorithms can usually identify areas of rainfall accurately 

in most cases, estimating the intensity of P remains more challenging. Figure 7 illustrates the bias (SM2RAIN minus radar-

based P) for light, moderate, and heavy rainfall. For light rain, the median bias is positive (2.1 mm day-1 for DCA), while for 

heavy rain the median bias is clearly negative (-3.9 mm day-1 for DCA). This result further highlights that the SM2RAIN 

algorithm tends to overestimate light rain and underestimate heavy rain, while for moderate rain, the median bias is closer to 295 

zero (-0.05 mm day-1 for DCA). However, it is also evident that particularly for heavy rain, the bias varies notably with both 

positive and negative values. 

 

 

Figure 8. Boxplot of the biases (SM2RAIN minus radar-based P) for light (< 1 mm day-1), moderate (1 – 4.5 mm day-1), and heavy 300 
(> 4.5 mm day-1) rainfall for the whole study period. 

 

3.3 Drydowns 

To identify drydowns, we first analyzed the impact of using different thresholds for daily P. The choice of threshold notably 

influences both the number of identified drydowns and their maximum length (Fig. S2). Specifically, using a lower threshold 305 

results in a decrease in both the number and length of drydowns. When applying the highest threshold (4.5 mm day-1), the 

number of drydowns identified is nearly the same as when no threshold is used (Figs. S2a-b). A stricter threshold leads to a 

noticeable decline in the number of drydowns (Figs. S2c-d). In terms of the maximum drydown length (Figs. S2e-h), the 

patterns are similar: the stricter the threshold, the shorter the maximum drydown length is. This was to be expected, as heavy 
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rain would most likely result in a clear increase in SM which would truncate the drydown regardless of using P information. 310 

For lighter rain, the changes in SM are less pronounced so using a very strict P threshold can truncate drydown when no 

increase in SM is detected. Since only drydowns lasting at least four days are considered, using a very strict P threshold thus 

leads to fewer and shorter drydowns. The spatial distributions for both variables follow a consistent pattern, with the highest 

number of drydowns and the longest drydowns occurring in the southern regions and progressively becoming lower and 

shorter towards the north (Fig. S2). 315 

 

 

Figure 9. The median time constant and the median lower bound of SM using different P thresholds when identifying drydowns. 

 

The time constant τ remains relatively consistent across different thresholds (Fig. 9). When applying the lowest threshold 320 

(0.3 mm day-1), the median value is slightly higher in certain areas compared to the higher thresholds; however, the 

differences between the probability density functions (PDF) are negligible. The lower bound of SM is also unaffected by the 

selected P threshold. The values show spatial variability, but the variability is similar regardless of the used threshold. The 

PDF for both variables also shows similar results for each threshold. The median τ for all cases is 4.0 days and the median 

SMmin is 0.17 m3 m-3, respectively. Our analysis indicates that while the chosen threshold influences the number of identified 325 
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drydowns and the maximum duration of a drydown, it does not affect τ or the modeled lower bound of SM. Consequently, 

we have proceeded with the following analysis without applying any P threshold. 

 

 

Figure 10. The number of drydowns and the maximum drydown length for the entire study period and for spring, summer and 330 
fall. 

 

Figure 10 shows the number of drydowns and the maximum drydown duration in each grid cell for the entire study period, as 

well as separately for each season: spring (April-May), summer (June-August), and fall (September). The number of 

identified drydowns shows seasonal variation, which is expected due to the differing lengths of each season. Therefore, the 335 

summer season, being the longest, experiences the highest number of drydowns. Overall, the number of drydowns tends to 

be highest in the southwest region and decreases towards the north. The maximum length of drydowns also varies by season 
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(Figs. 9f-h), typically becoming shorter as summer progresses into fall. Increased rainfall in the fall likely affects the length 

of the drydown periods. The spatial distribution of maximum drydown length follows a somewhat similar distribution to the 

number of drydowns, with the highest values found in the southwest and gradually decreasing to the north. The median 340 

drydown length across the entire study area ranges from 5 to 6 days, while the maximum length varies from 12 to 20 days 

depending on the season, respectively. 

 

 

Figure 11. The median time constant and the median lower bound of SM for the entire study period and for spring, summer, and 345 
fall. 

 

Figure 11 shows the spatial distribution of the median of τ and the modeled lower bound of SM, and PDF for both variables 

throughout the entire study period and separately for the spring, summer, and fall seasons. τ in each grid cell varies mostly 

between 1 to 10 days, with slightly higher values in spring and fall. The spatial distribution does not reveal any clear patterns 350 

in any of the seasons. The distribution (Fig. 11e) is highly positively skewed with a heavy tail. Across all seasons, the mode 

is 1.6 days, while the median ranges from 3.6 to 4.5 days, depending on the season. Unlike τ, the lower bound of SM exhibits 
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some spatial variability: the values tend to increase slightly near water bodies (Figs. 11f-i). However, near the water bodies, 

SMmin can occasionally present very low values, particularly in spring. The PDF (Fig. 11j) demonstrates that the distribution 

of SMmin displays a somewhat similar pattern across all seasons, with minor variations. The distribution of SMmin is 355 

positively skewed, with a mode of 0.14 m3 m-3 and a median ranging from 0.16 m3 m-3 to 0.18 m3 m-3. Furthermore, SMmin 

exhibits an additional lower peak at 0.02 m3 m-3, which is most pronounced in spring and decreases during summer and fall. 

The SMAP SM retrievals have a lower limit of 0.02 m3 m-3, which may cause an artifact in the results. 

 

 360 

Figure 12. The probability density functions for τ and SMmin in each class defined in Fig. 2c. 

 

Figure 10 suggests that the surface conditions may affect particularly the lower bound of SM. Therefore, we analyzed the 

distribution of both τ and SMmin separately for each surface class defined in Fig. 2c. As expected, τ does not vary 

considerably across the classes (Fig. 12a). The peak is slightly higher for the low vegetation class; however, overall, τ 365 

displays a similar distribution in all classes. In contrast, SMmin, varies notably across the classes (Fig. 12b). The low 

vegetation class exhibits the highest peak, with no detectable lower peak. The dense vegetation class also exhibits a single 

peak, which is slightly lower than that of the low vegetation class. The other two classes, "water" and "water and dense 

vegetation," show a mode at 0.02 m3 m-3, along with a lower and less distinct peak at higher values. Since 0.02 m3 m-3 is the 

lower limit of SMAP SM retrievals, it may introduce an artifact in the results. Figure 12b indicates that water bodies 370 

particularly complicate the SM retrieval. While dense vegetation alone does not pose as much of a challenge, its combination 

with water makes SM retrieval more difficult. 
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4 Discussion 

We have analyzed the relationship between SM and P and investigated whether satellite-based SM data can be used to 

estimate P rates by employing the SM2RAIN algorithm. Additionally, we examined the patterns of SM drydowns across 375 

Finland. 

 

The results indicate a generally strong correlation between SM and P, with SM levels rising during rainfall events and 

decreasing during dry periods. However, during April and May, snowmelt increases the SM levels across the study area 

(Figs. 4a-b), resulting in a less clear relationship between SM and P (Fig. 5b and 5e). Despite low overall rainfall rates in 380 

spring, the monthly range of SM remains relatively high. From June onward, a stronger relationship between SM and P 

emerges (Figs. 5c and 5f).  

 

Using the SM2RAIN algorithm, we evaluated the potential of estimating P from satellite-based SM data. Previous studies 

indicate that SMAP data typically perform well as input for the SM2RAIN algorithm (Koster et al., 2016; Miao et al., 2023), 385 

although forested areas complicate retrievals (Lai et al., 2022). Our analysis shows that while the algorithm accurately 

identifies the spatial extent of P, it struggles with intensity detection (Fig. 7). Specifically, the SM2RAIN algorithm tends to 

overestimate light rain and underestimate heavy rain (Fig. 8), aligning with findings from prior research (Koster et al., 2016; 

Tarpanelli et al., 2017). Additionally, soil wetting due to snowmelt in spring further complicates the algorithm's accuracy, as 

it misinterprets increased SM from snowmelt as rainfall, leading to inaccuracies in P estimates.  390 

 

The coarse spatial and temporal resolution of SMAP presents challenges in detecting small-scale phenomena. The original 

resolution of the radar data is considerably finer, which can lead to inaccuracies in comparisons, even after averaging the 

radar data to match the SMAP resolution. The spatial resolution of SMAP does not capture the systematic small-scale SM 

patterns. Figure 6b showed that SM can have systematically very different SM conditions within a single grid cell, making it 395 

challenging to relate the area-averaged SM measured by SMAP to the local SM conditions. Furthermore, the temporal 

resolution, ranging from one to two days, complicates the detection of rapidly moving rainfall areas. As Fig. 1 illustrated, the 

satellite-based SM data cannot capture all the variability in SM. Therefore, detecting small-scale precipitation events, which 

are common in Finland during summer, is challenging with the SMAP data. Additionally, the presence of water bodies 

introduces artifacts in SM retrieval, affecting the accuracy of P estimates. Despite these challenges, the results are promising, 400 

and our findings highlight the potential of satellite-based SM data for estimating P rates. This has considerable implications 

for improving rainfall estimation in regions with sparse ground-based observations, enhancing weather forecasting, and 

contributing to climate models. 
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We analyzed SM drydown patterns by fitting an exponential model to each SM drydown period, from which we estimated 405 

the exponential decay time scale (τ) and the lower bound of SM (SMmin). We tested three specific P thresholds and studied 

whether they had an impact on the drydowns. The results showed that the threshold affected both the number of drydowns 

and the maximum length of a drydown. However, they did not influence τ or SMmin, which is why we conducted most of the 

analysis without using any P threshold. 

 410 

Our findings indicate that τ exhibits minimal spatial or temporal variability (Fig. 11). The distribution of τ is positively 

skewed, with a mode of 1.6 days and a median of 4.0 days. The median agrees well with in situ measurements, which report 

a median value of 4-6 days (Shellito et al., 2016; Raoult et al., 2021). In contrast, SMmin shows more notable spatial 

variability. When we analyzed the distribution across different surface classes (as defined in Fig. 2c), we observed distinct 

differences. Grid cells containing water bodies show a mode in SMmin at 0.02 m3 m-3, alongside a lower and less distinct peak 415 

at higher values. Since 0.02 m3 m-3 is the lower limit for SMAP SM retrievals, this may introduce an artifact in the results. 

Conversely, grid cells without water bodies display a single peak around 0.13 m3 m-3. These differences in distribution 

suggest that surface conditions significantly influence the SMAP SM retrievals. Specifically, this result indicates that water 

bodies complicate SM retrieval, while dense vegetation alone does not pose as much of a challenge. 

 420 

The datasets used in the analysis generally perform well, but they may cause minor inaccuracies in the analysis. The radar-

based P data used as reference are overall accurate (Saltikoff et al., 2010) and agree well with in situ measurements. 

However, radar accuracy diminishes toward the edges of the study area due to beam curvature (Saltikoff et al., 2010), 

leading to slight uncertainties in these regions. These uncertainties are minimal, as the study area was defined based on radar 

distance (Fig. 2a).  SMAP has also been found to perform generally well, often exceeding the accuracy of SM estimates 425 

based on SMOS and Advanced Scatterometer (ASCAT; Colliander et al., 2023; Chen et al., 2018). However, some 

differences exist between the satellites, and further studies using different satellite datasets could assess and potentially 

refine our findings. 

 

Based on the analysis, water bodies complicate satellite-based SM estimates. In northern Finland, SM is measured in specific 430 

areas during April (Fig. 4a), even though much of the region remains covered in snow at that time. These areas correspond 

closely with areas identified as water bodies (Fig. 2c), indicating that the water fraction within those grid cells ranges from 

5% to 50%. Furthermore, these areas show a noticeable variation in monthly SM in April and May (Figs. 4g-h). In spring, 

many lakes in Finland remain frozen which likely influences the anomalous SM measurements in these regions. In summer, 

SMAP SM retrievals in turn tend to saturate near water bodies, particularly in southeastern parts of Finland (Fig. 4). The 435 

analysis also shows that the single-channel algorithm performs better near water bodies. Recent studies on SMAP 

performance in forests show that SMAP is able to detect SM variability under the canopy (Colliander et al., 2020b). This 

analysis is consistent with our finding: the analysis shows that water bodies complicate SM retrieval, while dense forests do 
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not pose a similar challenge. This finding also suggests that the methods used in this study could be applied across the 

Arctic, as water bodies cover only about 6% of the Arctic land surface (Paltan et al., 2015). 440 

 

Although this study primarily examined how P affects SM, it is important to note that the relationship can also work in the 

opposite direction. Specifically, SM influences heat fluxes from the ground thus impacting the atmospheric humidity and 

temperature profiles, which in turn can affect P rates (Seneviratne et al., 2010; Tuttle and Salvucci, 2016). While this was not 

the focus of the current study, it could be an area of interest for future research. 445 

5 Conclusions 

We have analyzed the relationship between SM and P, assessed the feasibility of estimating P from SM, and examined SM 

drydown patterns across Finland from April to September 2018-2019. This study was based on SM data from NASA’s 

SMAP satellite and used ground-based weather radar data and in situ SM and P measurements as reference data. The main 

findings of this study are as follows: 450 

 

• There is generally a good agreement between SM and P, with SM levels rising during rainfall events and decreasing 

during dry periods. However, in April and May, the correlation is weaker due to snowmelt, which increases SM 

levels. From June onward, a stronger relationship between SM and P emerges.  

• Using the SM2RAIN algorithm, we evaluated the potential of estimating P from satellite-based SM data. Overall, 455 

the analysis indicates that the algorithm detects the area of rainfall accurately, but estimating the intensity of P 

remains more challenging. Specifically, the algorithm tends to overestimate light rain (median bias 2.1 mm day -1) 

and underestimate heavy rain (median bias -3.9 mm day-1), which is consistent with prior research. 

• We analyzed SM drydown patterns by fitting an exponential model to each SM drydown period, from which we 

estimated the exponential decay time scale (τ) and the lower bound of SM (SMmin). Our findings indicate that τ 460 

exhibits minimal spatial or temporal variability. The distribution of τ is positively skewed, with a mode of 1.6 days 

and a median of 4.0 days, consistent with other studies. The distribution of SMmin is also positively skewed, with a 

mode of 0.14 m3 m-3 and a median of 0.17 m3 m-3.  

• The analysis also shows that surface conditions significantly influence the SMAP SM retrievals. Specifically, our 

findings indicate that water bodies complicate SM retrieval, while dense vegetation alone does not pose as much of 465 

a challenge. This result suggests that the method used in this study could be applied across the Arctic because only a 

small fraction of the Arctic land surface is covered by water bodies. 
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